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Molecular dynamics(MD) simulations were performed in order to investigate the phenomenon of free
oscillations of nanodroplets and the extent to which the continuum theory for such oscillations holds at
nanoscales. The effect of temperature on these oscillations is also studied. The surface tension, a key property
for the phenomenon of interest, was evaluated and compared with the experimental values of argon, showing
that with an appropriate choice of the cutoff distance in the MD simulations, it is possible to predict the surface
tension with good approximation. Nanoscale capillary waves on the free surface of the droplet were observed
and compared to continuum theoretical predictions of the same. The nanodroplet interface thickness calculated
based on continuum theory for these waves agreed well with the molecular dynamics calculation of the
interface thickness. The frequencies of the oscillation of the droplet were calculated for all the studied tem-
peratures and compared with the classical continuum theory. Although the simulated system cannot be con-
sidered strictly as a continuum, a good overall agreement was found.
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I. INTRODUCTION

The problem of oscillating liquid drops is relevant to sev-
eral scientific fields and practical applications, such as cloud
physics, containerless processing in low gravity, collision,
coalescence, and break up of droplets in sprays, chemical
processes, and measurement techniques of interfacial proper-
ties.

There is a rich literature on this subject for droplets de-
scribed by continuum theory in all theoretical, numerical,
and experimental domains. We report briefly select key re-
sults directly relevant to the present work.

Lord Rayleigh[1] investigated mathematically the nature
of oscillations of an inviscid liquid drop and assuming small
deformations. Neglecting the effect of the surrounding gas,
the natural frequency of a free droplet of radiusR, surface
tensiong, and liquid densityrl, can be evaluated by

vn
2 =

g

rlR
3nsn − 1dsn + 2d. s1d

The fundamental oscillation mode in Eq.(1) is correspond-
ing to n=2 whereasn=1 relates to a rigid spheroid. Subse-
quently, Lamb[2] studied the effect of small viscosity, i.e.,
Re=1/nsRg /rd1/2@1, where Re is the Reynolds number.
With this hypothesis the frequency of the oscillation is the
same as in Eq.(1) while the amplitude is damped exponen-
tially as follows:

A = A0e
−bnt s2d

whereA is the amplitude of the droplet oscillation,A0 is the
same quantity, but in the inviscid limit,t is the dimensional
time, andbn is the damping coefficient defined as follows:

bn = sn − 1ds2n + 1dn/R2. s3d

The latter is a constant not depending on the restoring force,
but only on the size of the droplet and its viscosityn. Chan-
drasekhar[3] later obtained more general results for a vis-
cous spheroid. Prosperetti[4] presented a theory for a vis-
cous drop under infinitesimal amplitude oscillations. This
analysis predicts that the system behaves as a damped oscil-
lator which, when viscous effects are small compared with
the inertial ones, is characterized by a natural frequency
svn

2−bn
2d1/2. The analysis predicted also a transition from a

periodic to an aperiodic decay as the viscosity increases,
while for certain ranges of the parameter 1/Re, it is also
possible to have an aperiodic oscillation that evolves into
periodic.

Nonlinear effects due to moderate amplitude oscillations
of an inviscid droplet were considered by Tsamopoulos(TS)
and Brown[5] extending Rayleigh’s analysis to second order
for certain combinations of mode coupling. Their analysis
predicted for the second oscillation mode a shift of the os-
cillation frequency with the increasing of the square of the
initial amplitude of the oscillationA:

v28 = v2f1 − 0.63876A2 + OsA4dg. s4d

Becker, Hiller, and Kowalewski[6] studied, both theoreti-
cally and experimentally, the oscillations of a free droplet
generated from a break up of a liquid jet. They found that the
frequency shift decreases with the square of the oscillation
amplitude as predicted in[5], but with a larger rate and with
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variations for different generated droplets depending on the
initial internal flow field inside the drop.

The study of a realistic configuration, including nonlin-
earities of viscosity and large oscillations, requires solving
the Navier-Stokes equations numerically. Basaran[7] per-
formed a rigorous numerical study using a Galerkin/finite
element technique for large oscillations of viscous drops and
focusing on the oscillation of a drop released from the sec-
ond spherical harmonic shape. The calculations showed a
good agreement with the predictions of Prosperetti and TS
analysis within their application limits. The influence on the
oscillation period and decay factor due to initial internal cir-
culations was investigated numerically by Mashayek and
Ashgriz [8] showing that it can result in a significant change
in the characteristics of the drop oscillation. Recently
Pozrikidis [9] implemented a numerical method using a 3D
generalized vortex formulation. The accuracy of the results
obtained was dependent on the dominant droplet oscillation
mode but was satisfactory overall.

On the experimental side, Trinh and Wang[10] studied
the large amplitude oscillations of quasineutrally buoyant
silicon oil and carbon tetrachloride levitated in distilled wa-
ter. They found that the frequency decreases with increasing
the square of the oscillation amplitude and, in an oscillation
period, the prolate phase lasts longer than the oblate phase,
confirming the predictions of Tsamopoulos and Brown[5]. A
study of the oscillation of a low-viscosity droplet in a micro-
gravity environment of a space shuttle flight was performed
by Wang et al. [11]. The resulting frequency shift for the
second-mode oscillation was in agreement with the predic-
tions of the theory[5] for A,0.3. Azuma and Yoshihara[12]
employed electrical excitation to obtain 3D, large amplitude
oscillations of a mercury drop. A relationship between drop
oscillation modes and frequencies was found. Nonlinear in-
teraction of waves resulted in polyhedral oscillations.

The goal of the present work is to extend the previous
findings for the second oscillation mode to nanoscales
through the use of molecular dynamics(MD), investigating
whether the applicability of the continuous theories is still
valid for atomic clusters. Another important issue is that the
MD simulations are 3D, thereby providing a complete view
of the phenomena. In Sec. II the numerical method is de-
scribed. Section III reports the results for the liquid-vapor
interface, surface tension, and droplet oscillation. Conclu-
sions are presented in Sec. IV.

II. MD SIMULATIONS

The studied argon nanodroplet consists of about 330 000
atoms interacting with the 12-6 Lennard-Jones pair potential

Fsrd = 4«FSs

r
D12

− Ss

r
D6G . s5d

The values for the parameters in Eq.(5) were chosen so as to
mimic the gas argon(s=3.405 Å and«=1.67·10−21 J). The
simulation domain is a cubic box of sideL=154.8s with
periodic boundary conditions in all the three directions.

The value of the cutoff distance is set to 4s. This particu-
lar choice was suggested by the results of Trokhymchuk and

Alejandre [13] who compared previous findings with their
calculations for the surface tension evaluation of a planar
film via MD and Monte Carlo simulations. They showed that
differences found by diverse authors in surface tension
evaluation were due to the potential used, shifted or non-
shifted, and mainly to the assumed cutoff radius. They con-
cluded that different methods are giving the same results for
a cutoff distance larger than 4.4s. A further comparison with
experimental argon data[14] showed that a cutoff distance of
approximately 4s could reproduce the experimental data for
argon, including the values of surface tension. The results are
expressed in dimensionless form using the standard reference
scales for a Lennard-Jones fluid(s as length scale,« as
energy scale, andsÎm/« as time scale, wherem is the mass).

We focus our attention on three different temperatures in
this study:Ts« /kBd=0.81, 0.9, and 0.97. The target tempera-
ture is reached by rescaling the particle velocities[15] every
250 time steps. The system is equilibrated until the average
temperature is constant(this required up to 750 000 time
steps for the case ofTs« /kBd=0.97). The leap-frog algorithm
is used to integrate the equation of motion with a dimension-
less time step of 0.005 during the equilibration. The time step
is halved during the droplet deformation-oscillation transient.
Each calculation required one–two months using a parallel
algorithm that employs simple spatial domain decomposition
[16] on a 4 CPU DEC parallel machine.

III. RESULTS

A. Liquid-vapor interface

In nanoscopic droplets one must define a radius because
the liquid-vapor interface is not sharply identified. It is com-
mon to characterize the droplet size with the equimolar di-
viding radiusRe as follows:

N = rl
4p

3
Re

3 + rvSL3 −
4p

3
Re

3D s6d

whereN is the total number of atoms,rl andrv are, respec-
tively, the liquid and vapor densities. The nonuniformity of
the liquid-vapor interface is evident from observing the ra-
dial density profile in Fig. 1 for all the studied cases. The
value of the density is constant within the liquid and the
vapor regions, while the interface region is characterized by
a thin layer where the density profile is decreasing monotoni-
cally from the liquid to the vapor value. The reported curves
in Fig. 1 are relative to the equimolar dividing radius, so that
the three curves are intercepting in the same point atR=Re.
The two asymptotic values of the densityrl inside the liquid
andrv inside the vapor can be obtained by fitting the density
profiles with the formula:

rsrd =
1

2
srl + rvd −

1

2
srl − rvderfFÎp

sr − R0d
D

G s7d

whereD is a measure of the liquid-vapor interface thickness,
R0 is another path to estimate the droplet radius, defined as
the radius at which the corresponding density is the average
of the liquid-vapor asymptotic values. Numerically,R0 is
close to the quantityRe defined in Eq.(6) (for the present
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calculations the discrepancy is less than 1%). The two pa-
rametersD andR0 can also be obtained by fitting the density
profile. The choice to fit the density profiles with the error
function [Eq. (7)] rather than the usual hyperbolic tangent is
supported by calculations of Sides, Grest, and Lacasse[17]
stating a better prediction of the interface thickness, as well
as by the work of Toxvaerd and Stecki[18]. Herein it is
verified that the error in the fit of the density profile is
smaller by around 10% compared to the fit performed with
the hyperbolic tangent function. The prediction of interface
thickness with the error function fit is by 5% larger compared
to the hyperbolic tangent fit.

The thickness of the interface can be mostly explained by
the presence of capillary waves excited by thermal energy.
Capillary waves are nothing more than an expression of the
internal Brownian motion that is randomly deforming the
spherical shape of the droplet. This phenomenon is more
evident in nanodroplets, because the amplitude of capillary
waves is of the same order as the droplet radius. The thick-
ness of the interface due to capillary waves can be evaluated
analytically as a function of the mean-square displacement
kzcw

2 l of the radius. A simplified theory for estimatingkzcw
2 l

was proposed by Bartell[19]. He found that the mean square
displacement from the mean radius due to capillary waves of
modes of energykBT, assuming it follows a Gaussian distri-
bution, can be expressed as follows:

kzcw
2 l = o

l
o
m

skBT/2pgI lmd s8d

whereKB is the Boltzmann constant,I lm is the integral over
the surface harmonics(a detailed formulation can be found
in [19,20]), m= l −2n (n is an integer including zero), and l
=2,3, . . . ,lmax. An estimation oflmax is obtained from the
number of molecules in the periphery of a spherical cluster
Nc>2pfs3N/4pd1/3−1/2g and can be assumed of the order
of magnitude ofNc/2. Equation(8) shows that the mean
displacement is larger at higher temperatures. Finally the
thickness of the interface can be expressed as[19]

Dcw = k2pz2l1/2. s9d

Table I reports the values forD obtained via MD with Eq.(7)
and the analytical formulation with Eq.(9). The ratio be-
tween the thicknessesD evaluated analytically and via MD is
around 0.77 for the three cases considered. A similar result
(value of 0.83) is reported by Bartell[19], where the predic-
tion of Eq. (9) was compared with other previously per-
formed MD simulations of smaller droplets[21,22] (the hy-
perbolic tangent function was used to fir the density profiles
in these references). The fact that the above-mentioned ratio
is smaller than unity is known[23]. There are two contribu-
tions to the liquid-vapor interface thickness: an intrinsic con-
tribution due to the atomic structure of the fluid and a con-
tribution of the thermally excited capillary waves that
become more important with increasing the total surface
area. The total mean square displacement can be written as
the sum of the intrinsic and capillary wave contribution:

kz2l = kzi
2l + kzcw

2 l s10d

and it can be calculated defining it as the variance of the
derivative of the density profile(7), leading to the expression
[17]:

kz2l = D2/2p. s11d

A comparison with the experimental predictions for the pla-
nar interface thicknessD andDcw for argon[24] is reported
in Fig. 2 as a function of 1−T/Tc where Tc is the critical
temperature, showing good agreement. Discrepancies inDcw
are probably due to the different choice of the upper surface
wave cutoff.

B. Surface tension

The surface tension of a droplet can be evaluated using
the well-known Laplace formula:

g =
Dp ·R

2
s12d

whereDp is the difference between the pressure in the liquid
pl and the pressure in the vaporpv phase, andR is the radius
of the droplet. In the present work, it will be assumed that
the cluster is large enough to neglect the curvature effects
and we will consider in Eq.(12) R=Re. This assumption is
supported by the recent MD simulations of Bardouniet al.

TABLE I. Interface thickness due to capillary wavessDcwd and
calculated via MDsDd. The last two lines are the temperature os-
cillation periodtT and the damping constantt during the compres-
sion transient obtained by fitting the temperature profiles with Eq.
(14) for all the studied cases.

Ts« /kBd 0.81 0.9 0.97

Dcwssd: Capillary waves theory, Eq.(9) 2.23 2.70 3.39

Dssd: MD, Eq. (7) 2.87 3.34 4.38

Temperature oscillation periodtTssÎm/«d 18.4 20 21.4

Temperature damping constanttssÎm/«d 88.5 74.8 61.3

FIG. 1. Density profiles relative to the equimolar dividing radius
for the three different studied temperatures.
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[25] conducted on smaller clusterss5,Re,10d showing
that, within the error limit, the surface tension seems to be
curvature independent. The normal pressure profile is evalu-
ated using the algorithm of Thomsonet al. [22] to solve the
spherical extension of Irving-Kirkwood’s formula:

pNsrd = kBTrsrd −
1

4pr2o
k

fk s13d

where fk is the normal component of forces acting across a
control surface between a pair of atoms. The first term in the
right-hand side of Eq.(13) represents the kinetic contribution
sKPd to the total pressure while the second is the contribu-
tion due to internal forcessIFd. In Fig. 3 the two components
IF and KP are shown for the three temperatures examined.
The pressure differenceDp in Eq. (12) is not obtained di-
rectly from Eq.(13), but by adding the asymptotic values of
IF and KP (Fig. 3) inside liquid and vapor where the re-
quired relative standard deviation was less than 0.5% in or-
der to minimize the error due to the compensation of the two
terms in the right-hand side of Eq.(13).

Table II summarizes the values calculated for the densities
rl and rv, surface tensiong, pressurespv and pl, and the
equimolar dividing radiusRe for the three cases studied. The
corresponding experimental values ofrl, rv, andg for argon
are also reported for comparison. The MD simulation results
predict well the experimental values except for the surface

tension of the caseTs« /kBd=0.97 (the difference is around
10%). This is probably due to a nonperfect thermal equilib-
rium despite the long-time calculation required.

C. Droplet oscillation

In order to study the oscillation behavior of the droplet
after the thermal equilibrium was reached, an impulsively
imposed linear velocity fieldna=2Î« /ma sa=y,zd, is ap-
plied to each molecule of coordinatesx, y, andz inside the
liquid region to obtain an initially ellipsoid shape. Subse-
quently, the drop is allowed to oscillate freely. The tempera-
ture increase due to this energy input into the system can be
considered negligible(less than 1%) so that it will be as-
sumed that the thermodynamic parameters are the same as
that of the equilibrated droplet.

Figure 4 depicts the atomic positions inside the liquid
region during the oscillation in four different time steps for
the caseTs« /kBd=0.9. The first picture reports the maximum
deformation of the droplet along thex direction. This instant
will be considered as the initial stage of the temporal evolu-
tion. The maximum deformation along they-z direction is
very small and difficult to capture(third picture). Finally, a
spherical shape is reached(fourth picture) with no other vis-
ible oscillations.

TABLE II. MD calculation and argon experimental values[14]. Comparison for liquid/vapor densitiesrl, rv and pressuresPl. Pv;
equimolar radiusRe; and surface tensiong.

Ts« /kBd rvss−3d rlss−3d gs« /s2d Pls« /s−3d Pvs« /s−3d Ressd

0.81 0.008 0.794 0.70 — — — Experimental[14]

0.81 0.010 0.781 0.67 3.73e−2 7.5e−3 44.85 Present work

0.9 0.017 0.749 0.52 — — — Experimental[14]

0.9 0.020 0.737 0.51 3.95e−2 1.6e−2 43.87 Present work

0.97 0.030 0.709 0.39 — — — Experimental[14]

0.97 0.033 0.698 0.36 4.38e−2 2.68e−2 41.89 Present work

FIG. 2. Interface thicknessD and Dcw. Open symbols: present
work. Lines and closed symbols: experiments[24].

FIG. 3. Dimensionless pressure profiles in the radial direction
for three different temperatures. K=Kinetic component, IF
=Internal Forces component.
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To evaluate the magnitude of the droplet deformation, the
computational domain is divided into 30330330 bins, and
a first-order interpolation scheme is used to convert the La-
grangian description of the atom simulation to an Eulerian-
type iso-surface of density. Subsequently, a least-squares in-
terpolation was used to fit the particles inside regions with a
densityrsRed±0.01rsRed, (i.e., within a small range of den-
sity corresponding to that of the equimolar radius in the
equilibrated configuration), onto an ellipsoid, in order to
evaluate the three axesa, b, andc of the deformed droplet.
This procedure gave the same qualitative results obtained by
evaluating the gyration radius along the three axis defined as:
Ra=1/Noi=1

N ai
2, wherea=x,y,z.

Figure 5 shows a typical density field in a cross section in
the middle plane during the deformation. Due to the interpo-
lation technique and the large number of atoms in each cell,
a good spatial definition is achieved without time averaging.

The time behavior ofa/b, is depicted in Fig. 6 for the
caseTs« /kBd=0.81. As observed before, only one oscillation
period can be seen; further oscillations are damped by vis-
cosity and become indistinguishable from the noise due to
capillary waves. Moreover, when the oscillation amplitude is
comparable with the amplitude of capillary waves, the as-
sumption of an ellipsoid shape is not anymore realistic.

During the first deformation transient(negative time with
respect to the curve reported in Fig. 6), the mean temperature
of the system exhibits also a harmonic damped behavior
(Fig. 7). The period and the dumping constant are small com-
pared to those reported below for the droplet oscillation. This
fluctuation is probably caused by the externally imposed ve-
locity field that is perturbing the initially equilibrated con-
figuration decreasing the distances among the atoms. This
event is leading to a harmonic damped oscillation of the
potential and kinetic energy(the total energy of the system is
constant), hence the temperature that is persisting until the
droplet reaches its maximum deformation. The periodtT and
the damping constantt of the temperature oscillation are

calculated by fitting the MD results with the function

Tstd = T0 sinS2p

tT
t + fDe−t/t + Tav s14d

whereT0 is the initial oscillation temperature amplitude,Tav
the average temperature, andf the phase. Results are re-
ported in the last two lines of Table I for all cases studied. It
appears that both parameters are practically linear functions
of the temperature.

For the present study, the Reynolds number, which is a
measure of the relative effect of viscosity compared to iner-
tia, is 2.17,Re,2.52. The values ofn were set equal to the
experimental argon values[14]. If the nonlinearities due to
oscillation amplitude and viscosity are small, the second
mode oscillation amplitude can be approximated[6,26] as
follows:

FIG. 4. Particle location inside the liquid region at four different
time steps for the caseTs« /kBd=0.9, time insÎm/« units. FIG. 5. Density field in a cross section in the middle plane

during deformation.

FIG. 6. Ratio between the two interpolated ellipsoid axes during
the droplet oscillation for the caseTs« /kBd=0.8.
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jstd = A sinHv2FÎ1 −S b2

v2
D2

+ aA2Gt + wJ + bA2

s15d

wherea accounts for the oscillation amplitude influence on
the frequency,b for the asymmetry of the oscillation be-
tween the prolate and the oblate deformation, andw for the
phase. The amplitude damping is evaluated as

Astd = A0 exps− b2td. s16d

The oscillation amplitudes of all cases were fitted with Eqs.
(15) and(16) using as fitting parametersA0, a, b, w, b2, and
v2 (Fig. 8). The initial droplet deformationsA0=a/R−1
achieved after the compression phase are 0.29, 0.34, and
0.34 for the temperaturesTs« /kBd=0.81, 0.9, and 0.97, re-
spectively.

The resulting values ofv2, b2, anda are reported in Table
III in dimensionless units. The values ofv2 obtained from
Eq. (1) are also reported for comparison. The asymptotic
frequenciessv2d obtained by Eqs.(15) and (16) are quite
close to that predicted by Rayleigh’s linear analysis[the larg-
est difference is approximately 8% forTs« /kBd=0.9]. The
parametera is ranging from −0.32 to −2.6. The latter
value, corresponding to the caseTs« /kBd=0.97, is quite large
and denotes a marked decrease in the oscillation frequency
with the oscillation amplitude(Becker, Hilla, and Kow-
alewski [6] obtained with continuum theory −0.6,a,
−0.9 for a droplet that had a maximum initial deformation
A=0.65 and Re@1) so that the observed oscillation is quite
close to that of the caseTs« /kBd=0.9. It has to be stressed

that the fitting procedure is not entirely accurate due to the
fact that only one oscillation is visible before the droplet
becomes practically a sphere and for the higher temperature
case the amplitude fluctuations due to capillary waves are
large. The values obtained forb are in the same range with
those found by Beckeret al. [6].

A direct comparison of the damping constantb2 with the
corresponding value of Eq.(3) cannot be made because this
equation uses the shear viscosity, neglecting the effects of the
bulk viscosity. However, it is of interest to report that, pos-
sibly due to this viscosity inconsistency, the computed values
for b2 (reported in Table III) are approximately 30% smaller
than theb2 values obtained from Eq.(3). This underlines the
importance of bulk viscosity contribution in a compression
and volume change process like the one we are studying
here.

IV. CONCLUSIONS

The oscillatory behavior and related thermophysical prop-
erties of nanodroplets were studied using molecular dynam-
ics simulations. Using a proper cutoff distance it was pos-
sible to obtain the experimental values of density and surface
tension for argon with a good approximation. The surface
thickness due to capillary waves based on continuum theory
was quantified to be around 86% of the total surface thick-
ness evaluated via MD. A linear interpolation scheme was
used to obtain a Lagrangian formulation of the system in
order to calculate the oscillation amplitude of the droplet.
Although due to the viscosity effects only one oscillation

TABLE III. Fitting parameters of Eqs.(15) and (16) describing the droplet oscillation behavior for the
three studied temperatures.

Ts« /kBd v2 ssÎm/«d−1 MD v2 ssÎm/«d−1 Eq. (1) a b b2 ssÎm/«d−1

0.81 0.0090 0.0088 −0.91 0.32 0.0050

0.9 0.0075 0.0082 −0.32 0.32 0.0039

0.97 0.0077 0.0074 −2.72 0.29 0.0040

FIG. 7. Time behavior of the system temperature during the
deformation transient for the caseTs« /kBd=0.9. FIG. 8. Oscillation amplitude MD and fit with Eqs.(15) and

(16).
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period is visible, typical phenomena that are described in
previous works both experimental and numerical/theoretical
based on continuum theory, were observed. The frequency of
the oscillation decreases for the finite oscillation amplitude
and the prolate phase lasts longer than the oblate. The values
obtained for the asymptotic frequencies are in good agree-
ment with that of Rayleigh’s linear theory. In all it was found
that the continuum analysis can predict reasonably well the

oscillation behavior of nanodroplets, although quantitative
differences exist.
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